On graphs satisfying a strong adacency property
نویسندگان
چکیده
ON GRAPHS SATISFYING A STRONG ADJACENCY PROPERTY Y. Ananchuen and L. Caccetta School of Mathematics and Statistics Curtin University of Technology GPO Box U1987 Perth 6001 Western Australia. Dedicated to the memory of Alan Rahilly, 1947 1992 Let m and n be nonnegative integers and k be a positive integer. A graph G is said to have property P*(m,n,k) if for any set of m + n distinct vertices of G there are exactly k other vertices, each of which is adjacent to the first m vertices of the set but not adjacent to any of the latter n vertices. The case n = 0 is, of course, a generalization of the property in the Friendship Theorem. In this paper we show that, for m = n = 1, graphs with this property are the ( (k+t)\l so-called strongly regular graphs with parameters t ,k+t, t-l, t) for some positive integer t. In particular, we show the existence of such graphs. For m ~ 1, n ~ 1, and m + n ~ 3, we show that, there is no graph having property P*(m,n,k), for any positive integer k.
منابع مشابه
On global (strong) defensive alliances in some product graphs
A defensive alliance in a graph is a set $S$ of vertices with the property that every vertex in $S$ has at most one moreneighbor outside of $S$ than it has inside of $S$. A defensive alliance $S$ is called global if it forms a dominating set. The global defensive alliance number of a graph $G$ is the minimum cardinality of a global defensive alliance in $G$. In this article we study the global ...
متن کاملSpanning subgraphs of graphs partitioned into two isomorphic pieces
A graph has the neighbour-closed-co-neighbour, or ncc property, if for each of its vertices x, the subgraph induced by the neighbour set of x is isomorphic to the subgraph induced by the closed non-neighbour set of x. As proved by Bonato, Nowakowski [5], graphs with the ncc property are characterized by the existence of perfect matchings satisfying certain local conditions. In the present artic...
متن کاملGeneralized circular colouring of graphs
Let P be a graph property and r, s ∈ N, r ≥ s. A strong circular (P , r, s)-colouring of a graph G is an assignment f : V (G) → {0, 1, . . . , r − 1}, such that the edges uv ∈ E(G) satisfying |f(u) − f(v)| < s or |f(u) − f(v)| > r − s, induce a subgraph of G with the propery P . In this paper we present some basic results on strong circular (P , r, s)-colourings. We introduce the strong circula...
متن کاملTotal double Roman domination in graphs
Let $G$ be a simple graph with vertex set $V$. A double Roman dominating function (DRDF) on $G$ is a function $f:Vrightarrow{0,1,2,3}$ satisfying that if $f(v)=0$, then the vertex $v$ must be adjacent to at least two vertices assigned $2$ or one vertex assigned $3$ under $f$, whereas if $f(v)=1$, then the vertex $v$ must be adjacent to at least one vertex assigned $2$ or $3$. The weight of a DR...
متن کاملStrong Alliances in Graphs
For any simple connected graph $G=(V,E)$, a defensive alliance is a subset $S$ of $V$ satisfying the condition that every vertex $vin S$ has at most one more neighbour in $V-S$ than it has in $S$. The minimum cardinality of any defensive alliance in $G$ is called the alliance number of $G$, denoted $a(G)$. In this paper, we introduce a new type of alliance number called $k$-strong alliance numb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Australasian J. Combinatorics
دوره 8 شماره
صفحات -
تاریخ انتشار 1993